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There are two existing general approaches to the numerical solution of differential eigen- 
problems by multigrid, one which uses a linear multigrid solver for the inner loop of a 
linearization technique (e.g., inverse iteration) and the other which integrates multigrid 
directly into the problem solution (e.g., FAS). The present paper developes a third multigridlike 
approach, RQMG, that appeals directly to the variational problem of minimizing the 
Rayleigh quotient, applying easily to both global and local grid implementations. Numerical 
results are presented for a simplified single group diffusion problem. 6 1989 Academic Press. Inc. 

1. INTRODUCTION 

Suppose A and B are real symmetric matrices on a finite-dimensional Euclidean 
space H with innerproduct ( ., . ). We have in mind that A and B result from 
discretization of an elliptic differential eigenproblem. Consider the problem of 
finding the smallest eigenvalue and a unit eigenvector for the problem 

Au = Mu, (u, Bu)=l, u E H, 3, real. (1.1) 

(Solutions of equations will be denoted by bold letters.) Then there are two general 
multigrid approaches that have been studied for numerical solution of (l.l), 
namely: 

Multigrid as a linear solver. The discrete equations in (1.1) can be linearized by 
methods such as inverse iteration with linear multigrid solvers used for the inner 
loop. With care, multigrid can work very effectively here even though the linearized 
equations are indefinite and illconditioned. Many authors have studied this 
approach (cf., the early work in Cl, 7, 131). 

* This work was supported by the Department of Energy (DOE) under contract number DE-AC03- 
84ER80155 and by the AFOSR under Contract FQ8671-83-01322. The Los Alamos National 
Laboratory, Denelcor, and Control Data Corporation provided computer access. 

’ Dr. McCormick is also principal investigator for the Colorado Research Development Corporation, 
Drake Creekside Two, 2629 Redwing Road, Fort Collins, Colorado 80526-2891. 

442 
0021-9991189 $3.00 
Copyright c) 1989 by Academic Press, Inc. 
All rlghts of reproduction in any form reserved. 



MULTILEVEL VARIATIONAL METHOD 443 

Multigrid applied directly to the equations. Schemes such as those described 
in [2,4] more fully integrate multigrid principles into the problem solution by 
applying multigrid directly to the nonlinear system (1.1). For general nonlinear 
problems, such methods tend to be somewhat more effective than the linear solver 
approach. However, when carefully implemented, there is really very little difference 
in the performance of these two approaches as they apply to eigenproblems because 
such nonlinearity is “mild.” 

The method introduced in [S] can be thought of as a combination of the above 
two approaches because it applies multigrid principles directly to (1.1) using a 
linearization-like technique. See Section 5 for further details. 

The method treated in this paper takes the different approach of applying multi- 
grid principles directly to the variational problem 

N(u) = pno &2(u), (1.2) 

where RQ(u) = (Au, u)/(Bu, u) is the Rayleigh quotient. This is done by way of 
transferring the tine grid functional exactly to the coarser levels and using some 
relaxation scheme like coordinate relaxation [3] that applies to such functionals. 
First described in [9], we refer here to this technique as Rayleigh quotient mini- 
mization multigrid, or RQMG. As we shall see, RQMG needs very little care con- 
cerning such mechanisms as shifts and normalization conditions, and it has several 
advantages over the orther approaches. We will also see that RQMG extends easily 
to the case where local grids are used; that is, it provides a natural foundation for 
the fast adaptive composite grid method (FAC) [6, 111. 

This work was inspired by the efforts at Los Alamos National Laboratory to 
develop a multigrid-type scheme for solving the eigenproblem that arises in the 
single group neutron diffusion problem. The model problem here is the 2D elliptic 
equation 

-Au=kfu 

i 

(1.3) 
u2 dG? = 1, 

R 

where 52 = [0, 1 ]* is the unit square and f is a function with support Sz, = [a, fl] ‘, 
Odcr<p6 1. For example, 

cc<4 YGB 
otherwise. 

(1.4) 

(A model of more practical interest would, in place of A in (1.3), have a diffusion 
operator with discontinuous coefficients. However, the model as it is has the essen- 
tial features of interest to us here and was in fact the cause of some difficulties with 
the other two approaches.) This model is of particular importance because of the 
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need to use local grids over Sz,. We therefore include a numerical study of RQMG 
applied to (1.3) using both global and local grids. 

In this paper we keep discussion, notation, and development of RQMG to a 
minimum. In fact, after introducing the notation (Section 2), we present RQMG in 
its unigrid [lo] form (Section 3) and then briefly describe how it is implemented 
in a practical multigrid-like framwork (Section 4). We then discuss a linearized 
method (Section 5) and finish with a report on numerical experiments (Section 6). 
A theoretical analysis of the RQMG algorithm will be presented elsewhere. 

Unigrid is a very simple way to describe, implement, and test variationally 
formulated multigrid-like algorithms. In fact, the resulting algorithm performance is 
exactly what would be achieved by a more involved practical implementation 
except that the computational cost is much greater. The point here is that we can 
quickly implement and exactly predict the performance of various multigrid algo- 
rithms without the attendant programming troubles. This is best illustrated by 
noting that developing the code for the global grid solution of (1.3) together with 
collecting the results took a total of just a few man hours of effort. In fact, modilica- 
tion of the code to accommodate local grids took just a few additional minutes. 

2. NOTATION AND ASSUMPTIONS 

Since (1.1) is to be thought of as a discretization of some differential eigen- 
problem, and because multigrid methods require several coarser versions of such 
problems, we assume that (1.1) actually represents a family of discrete eigen- 
problems parameterized by h, the “mesh size.” We thus write 

Ahu = lhBhuh uh E Hh, )Ch real 

(uh, Bhuh) = 1, 

where Hh is the discrete Euclidean space of grid functions defined on grid Qh 
equipped with the innerproduct ( ., . ), Ah, Bh: Hh --* Hh are symmetric linear 
operators and Bh is positive semi-definite, and uh denotes an exact eigenvector 
associated with the smallest eigenvalue hh. Approximations will be denoted by uh 
and Ah, respectively. With a sequence of m parameters 0 < h, < h, _ i < . .. < hi, we 
are given a sequence of increasingly finer global grids Sz’, 52*, . . . . Sz”‘, and their 
vector spaces H’, H2, . . . . H”. (k will replace h, where appropriate. For the finest 
level KY”, we will frequently drop h, and m altogether. This should not cause confu- 
sion with continuous function space quantities which are in script notation.) Thus, 
the variational formulation of (2.1) for h = h, is 

RQ(u)=&$ (2.2) 

The intergrid transfers are denoted by Zl, : Hk + Hi, 1 <k, j < m. We assume 
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they are linear and full rank and refer to the case j> k as prolongation and j< k 
as restriction. We assume Zt = Z, the identity operator on Hk, and that Zb = Zj Zi 
for j between i and k. 

On each level k we let { df : 1 < i 6 n”} denote the canoncial basis for Hk (i.e., df 
is the ith column of the identity matrix for Hk). Let the set S be the collection of 
all basis vectors mapped to H”, that is, S = { Zrdf : 1 < i < nk, 1 < k d m>. 

To avoid iteration subscripts, we use uk as dynamic approximations and denote 
iterations by the replacement expression uk t u k. This means that uk is replaced by 
uk which may itself be an expression involving (the old) uk. Unless otherwise sub- 
scripted, I” will denote the smallest eigenvalue of (2.1). We refer to any nonzero 
vector uh that satisfies Ahuh = AhBhuh for some Ih as an eigenvector of (Ah; Bh). 
We let p(C) denote the spectral radius of a symmetric matrix C and 
cond(C) = p(C) p(C-‘). 

3. UNIGRID FORMULATION 

In this section we develop RQMG in its unigrid form because it greatly simplifies 
both the explanation and the theory. If the practical definition of RQMG is 
preferred, it may be best to skip to Section 4. 

It is first important to understand unigrid as a method for solving a symmetric, 
positive definite linear equation Cv =f: Briefly (see [lo] for more detail), the 
idea is to solve this system by minimizing the quadratic energy functional 
F(u) = (Cu, u) - 2(v, f). Thus, one “fine-to-coarse” cycle of unigrid with some 
initial approximation u begins by subtracting from u the multiple of the coordinate 
function dy that minimizes F along this direction. Called coordinate relaxation [3], 
this process proceeds in turn as i varies in some ordering over { 1,2, . . . . nm}. This 
is then followed by the same process but with dr replaced by Z;- 1 d”,- ,, then 
again with ZE- ,dy- I replaced by Zz- zdy-2, and so on to include Zydj. In other 
words, one unigrid cycle proceeds by selecting d in turn from S and making the 
replacement u c u - s*d, where s* minimizes F(u - sd) over s. 

To see why unigrid is equivalent to conventional multigrid, note that coordinate 
relaxation on the energy functional is equivalent to Gauss-Seidel on the linear 
system and that the steps involving dy are equivalent to Gauss-Seidel steps on the 
coarse grid equations Zk,CZTvk = Zi(S- Cu) with unknown vk, followed by the 
correction u c v + Zr uk. 

The extension of unigrid to the eigenproblem (1.2) is now direct. It is simply a 
matter of recognizing that the minimizer, s*, of RQ(u -sd) can be computed 
exactly for any d as a particular real zero of a quadratic polynomial in s. (See 
Section 4.) Thus, as in the linear case, one cycle of the unigrid form of RQMG 
for solving (2.2) proceeds by selecting d= ZrdF in turn in some ordering and 
performing the step 

RQ(u - s*d) = min RQ(u - sd) 
s 

ucu-Pd. (3.1) 



446 MANDEL AND MCCORMICK 

That is, s* is chosen to minimize RQ(u - sd) and u is then replaced by u - sd. For 
example, to simulate a lexicographic V(0, l)-cycle [12], we use the index ordering 
suggested by the Fortran loops: 

DO 10 K=O,M 

DO 10 Z= 1, N(K) 

DO 10 .Z= 1, N2(K) 

10 D(Z, J) = F’N(Z, .Z, K) 

Actually, for the numerical results reported in Section 5, we used a red-black 
ordering within each level. 

Local refinements are implemented simply by adding a new level of finer grid 
basis functions with support in the refinement region. More precisely, suppose level 
k is to be restricted to a particular subregion. Then the level k steps with d = Zrdf 
in (3.1) are simply restricted to those i that correspond to grid points of the given 
subregion. 

To anticipate how this formulation can be made practical, note that for fixed 
k < m, as d sweeps over Zzdr, (3.1) can be interpreted as a simple coordinate 
relaxation method for solving the level k variational problem given by 

RQ(u - KJvk) = rnin RQ(u - Zrvk). (3.2) 

It is now easy to see that such a sweep involves level k quantities only. 

4. PRACTICAL RQMG 

The unigrid scheme just described is computationally very expensive. This is 
primarily because all relaxation steps are performed on level W’. However, these 
computations can in fact be done exactly on their respective grids just as multigrid 
is done for the linear case. To see this, we first need to define the coarse grid 
operators Ak and Bk that are induced by the variational formulation. They are 
specified by the Galerkin condition 

Ak=Z;+,Ak+‘Zf+‘, 

Bk=Z$+,Bk+lZ:+l, O<kbm-1. (4.1) 

The grid transfers are assumed to satisfy the energy condition 

I;,1 = <“zft+‘: (4.2) 

where tk is some positive scale factor. For simplicity and without loss of generality, 
we henceforth assume ck = 1. 
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The following describes one V( 1, 1)-cycle of a practical multigrid algorithm that 
is in fact theoretically equivalent to a corresponding unigrid scheme as described in 
the previous section. We first write for u E H” 

RQ(u-sZ;df)= 
(u, A’%) - 2s(Z;A”u, d;) +.s’A;. 
(u, B’%) -2s(Zk,B’%, d;) +.?B;.’ 

where 

A;= (d;, Akd;), 

and 

B;.= (d;, Bkdf). 

Keeping track of the quantities a = (u, A’?), b = (u, B?), Z~A”u, and Zi B”u 
dynamically yields the following algorithm. Note that the coarse grid uk, 
1 ,< k <m - 1, approximate corrections to urn and not uk, the coarse grid eigen- 
vectors. 

Srep 1. Perform one sweep of coordinate relaxation using urn. 
Step 2. SetqmtO,rmtO,a~(Amum,~m),andb~(Bmum,um). 
Step 3. For k=m - 1 to 1 step - 1, do the following: qk~Z:+,(qk+‘+Ak+‘ak+‘); 

rk,z~+,(rk+‘+Bk+lUk+‘); uk + 0; and for i= I to nk do the following relaxation scheme 
(which includes updating a and b); 

Compute the minimizer, s*, that satisfies 

RQk(uk - s*d:) = min RQ’(uk - sdf ), (4.3) 

where 

RQk(uk - sd;) = 
a - 2s(qf + a!) + sZAi 

b - 2s(rf + 8:) + s2Br, ’ 
(4.4) 

s: = <qk> df >, rf= (rk, df), 

A:= (A’df, d;), B;.= (Bkd:, df), 

a! = (Akuk, df), and a; = (Bkuk, d:); 

ukcuk-s*dk* I ) 

a+-a-2s*(qk+ak)+P2Ak. ‘ I II 3 

and 

Srep 4. Fork=2tom-l,dothefollowing:uk~uk+I~~,uk~’;uk~1~O;andfori=l ton”perform 
the same relaxation on uf as in Step 3 (updating a and 6 accordingly). 

Step 5. ufl~Um+I~-,um-‘. 
Step 6. Perform one sweep of coordinate relaxation using urn. 

Note that a and b are global quantities, passed on between levels. 
The key to seeing the equivalence here is to note that RQk(uk) = RQ(u), where 
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24 = Urn + CJY, I,“uJ is the line grid approximation that would result from 
immediate correction by each coarse grid computation. Note that all computations 
involving d: are with level k quantities so that the total cost for k-cm is small 
compared to that for k=m, just as it is for linear multigrid methods. 

Computation of s* in (4.5) is quite simple because the critical points for the 
quotient of two quadratic polynomials in s are just the roots of another quadratic 
polynomial. In fact, a little analysis of (4.4) shows that if 

Z@(u) = ; < $ = RQ(Z;d”) 
I, 

(which is always true in practice), and if we let x= L$(qf + LX;) - A:(r;4 +/3f), 

y = bAi.- LIB:., and z = a(r; +/If) -b(qf + a“), then s* = - 2z/(y + d-). 
An operation count shows that a straightforward implementation of one coarse 

grid relaxation sweep requires one square root, M + + N + + 12 adds/subtracts, and 
M X + N x + 16 multiples/divides per grid point, where M + (M x ) is the number of 
adds/subtracts (multiplies/divides) per grid point used to form Akuk and similarly 
with N + (N x ) for Bkuk. This can be reduced somewhat to M, + N, + 12 
adds/subtracts and M, + N x + 10 multiplies/divides by prescaling Ak and Bk and 
further yet (for simple stencils) by freezing a and b in various ways (e.g., during 
red-black half sweeps, over one or more full sweeps, or over a full cycle). A 
linearized method, which does not require square roots, is described in the next sec- 
tion. However, the method as it stands may represent a small added cost over these 
other alternatives and it gives optimal results in some sense. In fact, the cost of 
RQMG beyond matrix multiplies is small and independent of the stencil, it is more 
robust, and it generally has much better convergence rates. Thus, for moderate to 
large stencils such as those that arise in 3D finite element discretizations, RQMG 
may actually be much more efficient than other methods. It also has the advantages 
of: not requiring any artificial normalization or special eigenvalue transfer condi- 
tions; availability of a variational measure (i.e., the Rayieigh quotient) to optimize 
parameters and step sizes, to provide a sense of optimality and a sound basis for 
coarsening, and to measure performance; and robustness under certain potentially 
adverse conditions including boundary or coefficient singularities, local grids, 
reduced coarse grid approximation orders, loss of regularity in general, and bad 
correlation between line and coarse grid eigenvalues. 

The focus here is on minimizing the Rayleigh quotient. However, as with linear 
operators whose variational problem is energy functional minimization, on each 
level there is a corresponding equation that is actually being solved. That is, in light 
of (3.2), the relaxation sweeps on level k can be considered as iterative methods for 
finding a solution (vk, pk) of the following nonlinear problem with minimal pk: 

Akvk - pkBkvk = I$,A”u - p’I;B”u, pk = RQ(u - Zrvk). (4.5) 

Note that vk is unique whenever pk is not an eigenvalue of (Ak; Bk). The value of 
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pk is always unique because it is the minimum of RQ(u - Zrvk) over uk. For k = m, 
however, (4.5) is equivalent to (2.1) with h=hk but without the normalization 
condition. We are not really interested in any particular value of the norm of urn, 
so we leave this free. 

5. LINEARIZATION 

The purpose of this section is to present a linearized version of the method both 
as a scheme for practical use, and as a theoretical tool to provide further insight. 

Finding the minimizer s* of RQ(u -sd) is equivalent to solving the linear 
equation 

with 

(d, (A-pB)(u-s*d))=O (5-l 1 

p = mm RQ( u - sd). 

In later stages of the algorithm, this number p tends to be very close to the first 
eigenvalue of (A, B). We can therefore expect a similar asymptotic convergence rate 
when .D in (5.1) is replaced by a fixed value, updated via p = RQ(u) before each 
multigrid cycle. Then every minimization step (3.1) with an approximate value of 
s* found from (5.1) turns out to be just a Gauss-Seidel step on the appropriate 
level for the homogeneous system Au - pLBr.4 = 0. 

We thus get the following simplified iterative algorithm: 

Step 1. p+ RQ(u). 
Step 2. Perform one cycle of the linear multigrid method on the system Au-pBu =O. 

A word of caution is in order. We want only to iterate on the system 
Au- pBu =O, not to solve it. Therefore, on the coarsest level, one cannot use a 
direct solver or too many iterations with a fixed p. If a better convergence factor 
on the coarsest level is needed, then one should make sure that the component 
in the direction of II’, the principal eigenvector on level 1, is not resolved. In our 
computational experiments we performed two sweeps on level 1. 

Hackbusch’s method [S] can be now interpreted in our framework as the above 
linearized method with projection steps 

Uk c Uk - 
iik<Uk,iik) 

(Uk,lik) ’ 

where iik is an approximation to uk, the eigenvector at level k, added at certain 
stages of the linear multigrid algorithm. 

These linearized methods trade robustness and variational guarantee of con- 
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FIG. I. Discretization stencils. 

vergence for slightly simpler programming and smaller operation count. As we 
expected, however, the asymptotic convergence factors are quite similar. We 
demonstrate this in the next section. 

6. NUMERICAL RESULTS 

We coded a unigrid version of RQMG according to the description in Section 3 
and applied it to the model problem in (1.3). Discretization used square elements 
and piecewise bilinear functions, resulting in the stencils depicted in Fig. 1. In each 
case reported here we discretized the domain Sz by a 33* uniform grid so that 
h=& We let m = 4 so that the interior of Sz’ consists of the single point (i, f). The 
f-support was centered at this midpoint and varied in grid size from 3* to 7* as 
indicated in Tables I and II. In each case we used red-black coordinate relaxation 
and a V(0, l)-cycle. (Thus, the convergence factors for a full V( 1, 1)-cycle should be 
approximately the square of that reported here (c.f., [8]), that is, about 0.06.) We 
report here on the asymptotic convergence factor, which we take to be the ratio 
between the successive residual norms l/Au - RQ(u)BuIl after many cycles. (Before 
computing these residual norms, u is normalized so that (Bu, u) = 1.) 

In Table I, all grids are global. These results indicate the insensitivity of the con- 
vergence factors to the size of thef-support. In Table II, thef-support is always 3* 
but the local grids vary in number from 0 to 1 to 2. All local grids are refinements 
of the finest global grid (33*), by a factor of 2, and each is of the exact size of the 
f-support. Note that the convergence factors are essentially the same in all cases 
reported here. This is representative of our experience so far with RQMG when 
local grids are present. 

To compare RQMG with the linearized version described in Section 5, we 

TABLE I 

RQMG: Insensitivity of Convergence Factors to Size off-support 

Grid size 
f-support Number of 

size local grids 

Asymptotic 
Convergence 

factor 

332 s2 None 0.23 
332 12 None 0.23 
332 15* None 0.24 
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TABLE II 

RQMG: Insensitivity of Convergence Factors to Number of Local Grids 

Grid size 
f-support Number of 

size local grids 

Asymptotic 
convergence 

factor 

332 32 None 0.23 
332 32 One 0.23 
332 3’ Two 0.24 

applied both methods to (1.3) using the same basic components: m = 4, the 332 
uniform grid, the nine-point stencils in Fig. 1 and the associate intergrid transfers, 
red-black relaxation and a I/(0, 1)-cycle, full f-support (i.e., 33*), no local grids, 
and the initial guess obtained from u(x, y) = sin(l.5xx) cos( 1.57~~). Table III 
contains their convergence histories in terms of the eigenvalues and residual norms. 
Note the dramatic difference in performance of these two methods, especially away 
from the solution, The RQMG eigenvalue approximations converge in three itera- 
tions to six-digit accuracy, while the linearization takes eight. A similar rate com- 
parison holds for the residuals. In fact, RQMG converges so fast that it experiences 
roundoff error effects by the seventh iteration. (These tests were performed in single 
precision Fortran on a Sequent Balance 2000; simple mechanisms can be used to 
circumvent the limiting effects of this precision on the iterative process, but none 
were used for the present set of experiments.) Finally, as expected, the eigenvalue 
convergence rates appear to be roughly the square of the residual convergence rates 
for both methods. 

TABLE III 

RQMG vs. Linearization 

Eigenvalues Residuals 

Iteration RQMG Linearization RQMG Linearization 

177.5611 177.5611 3.6 E2 
19.7638 92.1348 3.3 EO 
19.7552 34.1483 5.4 E-l 
19.7551 29.3944 1.0 E-l 
19.7551 21.1007 1.9 E-2 
19.7551 19.8029 3.4 E-3 
19.7551 19.7587 6.0 E-4 
19.7551 19.7554 1.8 E-4 
19.7751 19.7551 1.7 E-4 

3.6 E2 
1.0 E2 
3.6 El 
1.8 El 
1.0 El 
1.9 EO 
5.0 E-l 
1.4 E-l 
3.9 E-2 
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